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Maximum Likelihood Estimation (MLE)

e Given a set of n observations y = (y;, 1 € [n]).
e Goal: fitting the parametric model g(-, ).

e Maximum Likelihood Estimation of 0

0" = — | |
arg max nz og g(vi. 0

°g(y,0

latent structure.

Settings and Notation

e Reqularized Empirical Risk Minimization:

‘rgnéig L(6) :=R(0) + L(6)
_ %Z L£i(6) = %Z { —logg(y; 0)}

e L is possibly nonconvex and lower bounded
e For all i € [n], f(Z,y,0) and p(zly;
complete likelihood and the posterior distribution

e Focus on the Exponential Family Distribution:

f(z, vy, 0) = h(z,y;) exp (<5(Z/,y/') | ¢(9)> — 2P(H))

EM for Exponential Family

e \We define the following EM-related operations.
% E-operation: for any 6 € O,

n
=1
also, define 5/(0) := [, S(z;, yi)p(zilyi; O)u(dz).
) ¢ M—operatlon. for any S,
0 := 6(8) := arg min {R(O) +9(0) — (5| p(0))}

0cO

Batch EM Algorithm: given 8, set k = 0,
1. (E-step) §k+1) = 5((k))

For large n, the E-step Is computationally

expensive!

= [, f(z,y,0)u(dz) is a parametric model with
a latent varnable z — the function i1s generally intractable.
e \We use the EM algorithm which takes advantage of the

#) denote the
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General Formulation of Stochastic EM (sEM)

Idea: We replace the E-step with a stochastic/incremental E-step (sE-step) that looks at 1 sample only.

% sE-step (general form): w/ const. stepsize -y,

e Set the termination number K ~ U{1,2, ...,
g(k+1) _ glk) _ q,(g(k) _ Slk+1) )

e For kK > 0:
e Draw index ik € [n] uniformly (and jx € [n] for fiEM).
e Compute the surrogate sufficient statistics & (k1)
o Compute §**1) via the sE-step (see the left).

Kmax}

o fIEM: SK1) = S 4 (51 ;(_t/Z)) e:nd e Compute 8%+1 via the M-step (same as batch EM):
3(k+1) B g(k) n n_li (§(k) Ii §(tj’/(()) 0(k+1) _ E(g(kJrl))
- oo e Return: 6.

e Prior works: iIEM—Neal & Hinton, 1998; sEM-VR—Chen et al., 2018 (local convergence); fiIEM—inspired by SAGA.

How to analyze their global convergence? And which algorithm is faster?

iIEM as an incremental MM Scheme

e [EM can be interpreted as incremental MM (Mairal, 2015) with the upper bound surrogate function:
Qi(6;0') : / {log f(z;, yi; 0) — log p(zly;; ")} p(zilyi; @)u(dz) , where Qi(6;0") > Li(0), V6.

e Incremental MM: at every iteration k, we obtain 8(*1) = arg mingeg > Y1y Qi(6; 6(7).
e Convergence Analysis: with exponential family model, Q;(0;60") — L;(0) is L.-smooth for all /:

Theorem (iEM) For any K,.x > 1, K ~ U([0, Knax — 1]) independent of the {/k}fffg, we have the global rate:

2 L,
2
LEOW)P < o

S [E(6) — T8 W

sEM-VR/fiEM are Scaled Gradient Methods and Faster than iEM

e Unlike IEM, the sEM-VR and fiIEM methods can be analyzed as scaled gradients methods. Consider:
_ _ 1 — _
min V(s) := £(8(s)) = R(0(s)) + — IE_lﬁﬁ (6(s))

e Variance-reduced scaled gradient: the sE-step update §(%) by §%)
< 43[§(/<) _ S(k+1)] | V\/(g(k))> > Uq || 43[§(/<) B S(k+1)]H2 > Uy Hv\/(g(k)

. the sSEM-VR /fiIEM methods are variance-reduced, scaled gradient updates of the sufficient statistics.

— S+ we can show

)||* for some vy, vs > 0.

e Convergence Analysis: with exponential family model, the function V/(s) is L,-smooth,

Theorem (sEM-VR) v = £2m & epoch m = 53—  Theorem (fiEM) v = & o = max{6, 1 + 4unin}:

L,n?/3 2uPU2 L aL n2/3
~ 2 2Zv ’Ur%ax . ~ ~ . R QQQZV’UrznaX ~ ~
BRI < m = B (E0) - vE) EIVVER) < 0 EV(E) - v(Eke)
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e Goal: fitting a GMM with a penalization.
e Faster rate for sEM-VR and fiIEM (n = 10°)

Epoch

e |[teration number to reach e-accuracy vs. n.
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e Reveal the linear [O(n/€) for IEM] and sublinear
[O(n3/€) for SEM-VR/fIEM] rates

e Goal: Classifying D docs into K topics
e FAO (UN Food and Agriculture Organization)
datasets.
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